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ABSTRACT

We demonstrate experimentally that inference in a complex hybrid
Dynamic Bayesian Network (DBN) is possible using the 2-Time
Slice DBN (2T-DBN) from [Koller & Lerner, 2000] to model fault
detection in a watertank system. In [Koller & Lerner, 2000] a gene-
ric Particle Filter (PF) is used for inference. We extend the ex-
periment and perform approximate inference using The Extended
Kalman Filter (EKF) and the Unscented Kalman Filter (UKF).
Furthermore, we combine these techniques in a ’non-strict’ Rao-
Blackwellisation framework and apply it to the watertank system.
We show that UKF and UKF in a PF framework outperform the
generic PF, EKF and EKF in a PF framework with respect to accu-
racy and robustness in terms of estimation RMSE. Especially we
demonstrate the superiority of UKF in a PF framework when our
beliefs of how data was generated are wrong. We also show that
the choice of network structure is very important for the perfor-
mance of the generic PF and the EKF algorithms, but not for the
UKF algorithms. Furthermore, we investigate the influence of data
noise in the watertank simulation. Theory and implementation is
based on the theory presented in [v.d. Merwe et al., 2000].

1. INTRODUCTION

Currently, most of the problems presented in literature are limited
to static Bayesian networks, networks with discrete variables or
with linear relations between variables. In this paper, we assume a
Markovian, stationary model and setup a 2T-DBN in which nodes
given at timet is dependent only on variables at timet andt − 1.
This allows time varying relations between variables (however the
networkstructureis constant over time). We keep all observations
in their ’true’ domain leading to a model with both discrete and
continuous valued nodes. Our model also has linear as well as non-
linear relations. Showing how to do inference in these very general
models is very important as they allow for many real-life problems
to be modelled. Hence, we need to compare the performance of
different algorithms, investigate their sensitiveness to the choice
of network structure and find out if the algorithms fail when we
do not know the true variable relations or when we have a noisy
environment. In this paper, bold face symbols indicate a vector or
a matrix and standard face symbols are scalars.
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2. FILTERING IN BAYESIAN NETWORKS

Converting a multivariate Gaussian distribution into a Bayesian
network by ordering the variablesx1, ..., xn topologically, the dis-
tribution of a child conditioned on its parents is computed as

P (xi|x1, ..., xi−1) = N
(
xi; βi,0 +

∑i−1
j=1 βi,jxj , σ

2
i

)
.

An edge fromxj to xi(1 ≤ j < i) corresponds toβi,j 6= 0. In
general, filtering is the problem of estimating the state of a sys-
tem using a set of on-line observations. We solve this problem by
modelling the evolution of the system consisting of astate transi-
tion or state processmodelp(xt|xt−1) anda state measurement
modelp(yt|xt) and the noise on the measurements.xt ∈ <nx are
the states (hidden variables or parameters) of the system at time
t andyt ∈ <ny are the observations. For example, non-linear,
non-Gaussian models can be expressed asxt = f(xt−1, vt−1)
andyt = h(xt, nt) with vt ∈ <nv being the process noise and
nt ∈ <nn the measurement noise.

The EKF is a minimum mean-square-error (MMSE) estimator
based on the Taylor series expansion of the non-linear functionsf
andh around the estimates̄xt|t−1 of the statesxt, e.g.

f(xt, vt) = f(x̄t|t−1, v̄t|t−1) + ∂f(xt,vt)
∂xt

∣∣∣(xt=x̄t|t−1)

(xt − x̄t|t−1) + ∂f(xt,vt)
∂vt

∣∣∣(vt=v̄t|t−1)(vt − v̄t|t−1) + . . .

The UKF [Julier & Uhlmann, 1997] is a recursive MMSE es-
timator that does not approximate the non-linear process and mea-
surement models, but makes a Gaussian approximation of the dis-
tribution of the state random variable. When this variable is propa-
gated through the true non-linear system, it captures the true mean
and covariance to the second order for any non-linearity.

PF represents a generalization of Monte Carlo methods for
a dynamic process. The particles are weighted recursively us-
ing importance weightsωt = ωt−1

p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1,y1:t)
. In this pa-

per our goal is to perform filtering allowing proposal (approxima-
tion of the true posterior) distributiond of the formq(x0:t|y1:t) =
q(x0:t−1|y1:t−1)q(xt|y0:t−1, y1:t). Assuming the states follow a
1. order Markov process and that the obs. a conditionally inde-
pendent given the states yieldsp(x0:t) = p(x0)

∏t
j=1 p(xj |xj−1),

p(y1:t|x0:t) =
∏t

j=1 p(yj |xj). In the generic PF, the transition
prior q(xt|x0:t−1, y1:t) $ p(xt|xt−1) is used as proposal distribu-
tion. To introduce sample variety after the selection step without
affecting the validity of the approximation we may also apply a
MCMC step of invariant distributionp(x0:t|y1:t) on each particle.
We refer to this filter asPFCM . In this work, the EKF com-
putes the recursive approximation of the true posterior filtering

density given byp(xt|y1:t) ≈ pN (xt|y1:t) = N
(

x̄t, P̂t

)
. Using

the EKF in a PF framework, a separate EKF is used to generate



and propagate a Gaussian proposal distribution for each particle
q(x(i)

t |x(i)
0:t−1, y1:t)

.
= N (xt|y1:t), i = 1, . . . , N i.e. at timet− 1

the mean and covariance of the importance distribution for each
particle are computed using the EKF equations and the new obser-
vation. This filter is known as theExtended Kalman Particle Fil-
ter [Doucet et al., 1998]. Using the UKF as proposal distribution
generator leads to theUnscented Filter[v.d. Merwe et al., 2000].
These filters are abbreviated PFEKF and PFUKF resp. in this work.

3. WATERTANK SIMULATION

In this section we investigate the fault detection system presented
in [Koller & Lerner, 2000]. The system is shown in Figure 1. For
a more detailed presentation and more experiments using this net-
work, please refer to [Andersen & Andersen, 2003]. In Figure 2, a

Fig. 1. Illustration of the watertank system

2T-DBN describe how flow, pressure and resistance are related in
theory. Practically, the process and measurement models and the
measurements themselves are noisy. Furthermore, there are three
possible type of failures in the system that we would like to detect:

Measurement failure In the case of a measurement failure, the
measurement becomes extremely noisy.

Pipe bursts A pipe can suddenly burst and change its resistance
to some unknown value

Drifts The resistance of the pipe can drift, which gradually in-
creases or decreases the pipes resistance

Fig. 2. DBN for the watertank system

The discreteRF nodes indicate faults in the resistance of the pipes
(drifts or bursts) and theMF nodes indicate measurement failures.
The P , F andR nodes are continuous valued and indicate pres-
sure, flow and pipe resistance resp. However, as the flow is the
ratio between the pressure and the resistance, we use the conduc-
tanceC (reciprocal of the resistance) to avoid ratios. Finally, nodes
labelledM indicate pipe flow measurements and are observable
nodes. All other variables are hidden. The network has six pipe

fault variables and three measurement failure variables, leading
to 32,768 different discrete states. To simplify, the pipe connect-
ing the two tanks can not burst reducing the state space to 18,432
states. Unfortunately, this network is still far too complicated to
be able to use exact inference. Sub-optimally, we would like to
sample all discrete variables, which we can group into two vector-
valued nodesCF t (conductance failures) andMF t (measure-
ment failures), and apply exact inference on the remaining nodes,
which we group into a single vector-valued node,Xt. A tech-
nique known asRao-Blackwellisation(RB). The observable nodes
are likewise grouped into a single vector-valued nodeY t, allow-
ing a transformation of the fairly complicated network into a sim-
ple network as illustrated in Figure 3 usingCF t = A · CF t−1,
Xt = B (CF t) ·Xt−1 andY t = D ·Xt.

Fig. 3. Simplified DBN for the watertank problem

Although the noise is Gaussian, the dynamics are non-linear,
making it hard to integrate outXt. Hence, we apply our approx-
imate inference techniques EKF and UKF and call it ’non-strict’
RB. To compare, we also apply a generic PF, PFMC, PFKEF and
PFUKF to do inference on the continuous valued nodes,. All im-
plementations except PF and PFMC were designed as a two-step
serial process. The first process samples the discrete nodes us-
ing a generic PF algorithm, but without updating the cont. state
variables. The cont. states were then estimated (for each parti-
cle) in the second process using PF, PFMC, EKF, UKF, PFEKF
or PFUKF. This two-step process was used as all the EKF and
UKF based algorithms were able to give good estimates of the
cont. nodes based on poor estimates of the discrete nodes.

In Figure 2 we see that the flow nodes are the only hidden
nodes directly connected to the observation nodes. In EKF, the
Kalman gain is partly based on the Jacobian of the measurement
model. Even though pressure and conductance are highly corre-
lated with the flow, the Kalman gain thus only influences the flow
estimates. Figure 4 shows the relative RMSE of the flow, conduc-
tance and pressure estimates using EKF with correct initialization
of all state variables. The figure illustrates that EKF is making
poor conductance and pressure estimates whereas the flow esti-
mates are very accurate for all time steps. In the generic PF we
use the transition prior as proposal distribution and all particles are
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Fig. 4. Relative RMSE for conductance (red), pressure (black) and
flow (blue) estimates using EKF with correct initialization.



thus weighted according to their likelihood, i.e. based on the dif-
ference between the true and predicted values of the observations.
Hence, with only the flow nodes connected to the observations, a
particle with accurate flow values will give a high likelihood re-
gardless of whether the particle has poor conductance or pressure
estimates. This problem is illustrated in Figure 5 which shows
three different weighings of 10 particles. The actual weights used
follow the weights based on the flow values and not the optimal
weights. A large process noise would make this problem even
worse. In UKF, the Kalman gain is based on a number of sigma

Fig. 5. Actual weights used (blue), optimal weights based on the
distance from the true cont. states (green) and weights based on the
distance to the true flows (red) for 10 particles using the generic PF.

points that are propagated through the network using the true pro-
cess and measurement models. Both pressure and conductance are
highly correlated with the observation nodes, even though they are
not directly connected. This property makes UKF able to update
all continuous state variables. One of the objectives in the water-
tank problem is to track conductance failures making accurate es-
timation of the conductance a crucial point. Hence, a new network
was proposed by eliminating the flow nodes from the continuous
state variables allowing conductance and pressure nodes to be di-
rectly connected to the observation nodes. When data is generated
using the old network, noise is added to the flows making the data
more noisy than data generated in the new network. To compare
the two networks, the old network was used to generate data used
in both networks. If the new network performs better on a data set
generated by the old network, it is the obvious choice of network.
Figure 6 shows the average RMSE for the conductance and pres-
sure estimates from the two networks using PF, EKF and UKF.
The results are based on 10 different data sets using 10 runs for
each data set. As illustrated, the new network outperforms the old
network for all continuous state mean estimates using the generic
PF and EKF. In comparison, the performance of UKF does not
depend on the choice of network structure.

Next, we evaluate the sensitiveness with respect to the noise
by experimenting with different levels of data noise. Only UKF
and PFUKF were used based on their superior performance in the
previous experiments (see [Andersen & Andersen, 2003] for more
experiments and details). Four different process and measurement
noise levels were used,N (0, σ2), σ2 = 0.01, 0.1, 0.2 and0.4 and
the true noise levels were used as proposed noise levels (used in
the filtering algorithms). The RMSE and the number of wrong
failure estimates as a function of the noise levels are shown in Fig-
ure 7 using a time period of 100 time steps. The results were based
on 20 different data sets using 10 runs for each data set. Outliers
were removed. Notice the nice correlation between the RMSE and
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Fig. 6. Average RMSE for conductance and pressure estimates
using the old network (red bars) and the new network (blue bars)
using the generic PF, EKF and UKF resp.
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Fig. 7. Surface plots showing the RMSE (top plots) and CF/MF
estimation errors (lower plots) using UKF (left plots) and PFUKF
(right plots).

the number of wrong failure estimates for UKF (two left plots)
and PFUKF (two right plots). An accurate state estimate corre-
sponds to a small RMSE making it easier to track the failures and
vice versa. Both the RMSE and the number of wrong failure es-
timates using UKF and PFUKF are more influenced by the level
of the measurement noise than the process noise. Noisy measure-
ments are more crucial than a noisy connection between the hidden
variables as the algorithms are estimating the noisy hidden states
based onestimates of the measurements. Furthermore, Figure 7 il-
lustrates the relationship between UKF and PFUKF. PFUKF is do-
ing much better than UKF for large measurement noise levels, but
notice that the RMSE increases using the smallest process noise
level (0.01) and is actually doing worse than UKF: When UKF
makes accurate estimates, PFUKF can make matters worse by ei-
ther fitting the measurement noise or sampling from a Gaussian
distribution that is too wide.

In a real life simulation one of the major challenges is to come
up with reasonable process and measurement models. Simulating
the actual data gives us all the knowledge about the problem we
need and makes us capable of providing our algorithms with opti-
mal conditions. In this section, we change the proposed measure-
ment model by simply adding 5% to all the flow estimates. This
might affect UKF negatively leaving some space for improvement
for PFUKF. PF and PFMC were also included in the experiments
for the sake of comparison. 100 particles and 30 subparticles were
used over a time period of 60 time steps. Table 1 shows the mean
estimation RMSE and variance using 10 different data sets and 10
runs for each data set. The second column shows the average num-



ber of incorrect failure estimates. As shown, PFUKF is by far the
filtering algorithm that is most capable of dealing with a wrong
measurement model. PFUKF is able to move the particles towards
regions of higher likelihood which reduces the RMSE and makes
tracking of the discrete failure nodes easier.

Algorithm RMS CF/MF errors
mean var

Particle Filter - generic 256 204 56.3
Particle Filter - MH move 227 187 33.8
Unscented Kalman Filter 208 43 30.1
Particle Filter - UKF proposal 178 76 23.4

Table 1. RMSE of state mean estimates (mean and var.) and aver-
age CF/MF estimation errors using a false measurement model.

In [Koller & Lerner, 2000], a generic PF is applied to the water-
tank problem using the network structure in Figure 2. They pro-
pose as future work a combination of a generic PF (sampling the
discrete failure nodes) and a more sophisticated filter to sample the
continuous variables as in this work. It is impossible to make direct
comparisons between this work and the work of Koller and Lerner
due to likely differences in modelling (such as pipe bursts or mea-
surement failures). However, we have showed that the generic PF
(and EKF) are highly sensitive to the choice network structure as
opposed to the UKF based implementations which were superior
in terms of estimation RMSE. This was further indicated using a
false measurement model. Figure 8 shows the tracking ofC10
(conductance of pipe betweenTank1 and the outside world (only
every second error bar plotted for visual reasons) using UKF to-
gether with the events that occurred during a typical simulation.
Similar results were obtained for the other continuous state vari-
ables - data not shown) using UKF. We draw process and measure-
ment noise samples fromN (0, 0.5) and use a drifting factor of 1
(i.e. the pipe conductance changes one unit for each time step) to
obtain a low SNR ratio. We present a tracking plot for UKF in-
stead of the superior PFUKF to show that we can track the contin-
uous variables and detect system faults very well using a very low
number of particles compared to the 50000 particles used in the
generic PF in [Koller & Lerner, 2000] without taking advantage of
PFUKF, which is computationally more expensive than UKF.

Fig. 8. Estimation conductance variableC10 using UKF (red
line) and confidence intervals (plus, minus two standard deviations
from the mean estimate) and the true conductance C10 (black line)
based on ten runs with one data set using 300 particles.

4. CONCLUSION

In a 2T-DBN watertank simulation we have compared two network
structures and showed that the PF and EKF estimates were net-
work structure sensitive as opposed to the UKF estimates. Then
we showed that continuous state mean estimates using UKF and
PFUKF were more sensitive to changes in the measurement noise
level than in the level of process noise. Large measurement noise
levels made the UKF estimates poor and PFUKF was able to move
the particles towards the true state, i.e. reducing the estimation
RMSE. Finally, we experimented using a measurement model dif-
ferent from the true one by adding 5% to all the flow estimates.
Again, PFUKF was capable of making more accurate state esti-
mates than UKF and showed that PFUKF is a more reliable algo-
rithm, when we do not know the true model relations. Further-
more, UKF and PFUKF were more accurate than PF and PFMC.
Finally, we showed that we were able to track the discrete failure
nodes with a fairly low number of particles using UKF. These re-
sults are to some extent comparable with the work of Koller and
Lerner in [2000] in which the generic PF algorithm was applied
to the watertank problem using the network structure in Figure 2.
We have shown that a different network structure improved the
accuracy of PF (PFMC) and still the use of UKF significantly im-
proved the ability to track the true failure nodes and estimate the
continuous state variables with a low number of samples.

All in all, we have compared several inference techniques and
shown that it is possible to do inference in a complex hybrid DBN.
All in all, we conclude that we should choose PFUKF, when the
measurements are noisy (i.e. when UKF is not able to make reli-
able estimates), when we do not know the ’true’ process and mea-
surement models, when we work on higher order models (data not
shown) and have the necessary computational time. Otherwise, we
would settle for UKF or standard PF. However, PF has the disad-
vantage that is network structure sensitive.
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